Miscellaneous Excerpts from Magazine Articles
Regarding Cable Cars
Collected by Joe Thompson

These articles from Manufacturer and Builder Magazine were published in the 1870s. Photo scans of the articles are available from Making of America at Cornell University. Uncorrected text scans are available from the Library of Congress' American Memory site. I did some cleanup of the text scans. I made a few editorial comments in italics with my initials.


East and West

From Overland Monthly and Out West Magazine / Volume 1, Issue 2, February 1883

"My favorite amusement all season has been," writes a summer sojourner in the city, "riding on the cable road, in the open cars, drawn up and down the endless series of hills by unseen power. After a hard day's work with dictionaries and old histories, it was a luxury to take the front seat on one of the neat, well-managed cars -- a seat that just holds two persons -- and start off in the smoothest, easiest motion, sweeping up the long ascents with the sunshine full on one, the pure, delightful rush of Pacific air in one's face, and the great, glowing views, to right, to left, before one, changing at every slope -- here the millionaire mansions and terraces of velvet turf, like hanging gardens; next the sight of the Golden Gate, the blue water, the forts, and Alcatraz; the other side the deep, bright valley surging againt the Coast Hills, alive with the wreathing sorcery of the Pacific mists, a Niebelungen lay of sun and shadow -- till the quiet heights of the cemeteries were reached, kept by white tombs and Monterrey cypresses..."

Go to top of page.


San Francisco

From Harper's New Monthly Magazine / Volume 66, Issue 396, May 1883

The corner of California and Montgomery streets, in the quarter just described, may be considered one of the two focal points of San Francisco, the Lotta Fountain the other. The Lotta Fountain is a tawdry little cast-iron affair, which was presented to the city by the minor actress after whom it is named, and has been placed in a position of distinguished honor. Five important streets radiate from it, and its pedestal is a place where you seek refuge at need from the throng of vehicles coming along them. Market Street extends to the Oakland Ferry in one direction, and off (past the Mechanics Institute Fair, and the popular pleasure resort known as Woodwards Garden) toward the distant Mission Hills in the other. Geary Street takes you by its cable road to Lone Mountain, around which all the cemeteries are grouped, and to the Golden Gate Park, which reaches westward to the ocean. Upon the top of Lone Mountain stands up a dark cross, which recalls the Crucifixion. Third Street, a thoroughfare of the working-people, and abounding in small restaurants, markets. and tin - type galleries, leads to the water at a different angle from Market. Finally Kearney Street debouches here, and Montgomery terminates at hut a few steps below the same point.

The Palace Hotel, a vast drab-colored building of iron and stuccoed brick, looms up nine stories in height on Market Street, and closes in the vista at the end of Montgomery. It is so studded with bay-windows that it has the air of a mammoth bird-cage. The devoted San Franciscan, wherever met with, never fails to boast of this hotel as the most stupendous thing of its kind in the world. With the con- viction that size is not the kind of improvement which all of our hotels, and our communities as well, most need, I should say at least that perfection in exterior design had not been reached. Within the glass-roofed court which occupies the centre the effect is more satisfactory. At night, when the electric light strikes upon the many tiers of columns as white as white paint can make them, it is even Parisian and fairy-like. A band plays twice a week, and the guests promenade in their several galleries or look down over the balustrades to the bottom of the court, where there are flowers, people in chairs, and carriages standing in a circular, asphalt-paved driveway.

The San Francisco householder, and the Croesus particularly, has a station like the herald Mercury new-lighted on a heaven-kissing hill. How in the world, I have asked, does he get up there? Well, then, by the cable roads. I should consider the cable road one of the very foremost in the list of curiosities... It is a peculiar kind of tramway, quite as useful on a level, but invented expressly for the purpose of overcoming steep elevations. Two cars, coupled together, are seen moving, at a high rate of speed, without jar and in perfect safety, up and down all the extraordinary undulations of the ground. They have no horse, no steam, no vestiges of machinery, no ostensible means of locomotion... The solution of the mystery is in an endless wire cable hidden in a box in the roadbed, and turning over a great wheel in an engine-house at the top of the hill. The foremost of the two cars is provided with a grip or pincers, running underneath it, through a continuous crevice in the same box as the cable, and managed by a conductor. When he wishes to go on he clutches the always-moving cable, andgoes with it; if he wishes to stop, he simply lets go and puts on a brake. Fortunately there is no snow and ice in this climate to clog the central crevice, which, by the necessities of the case, must be open. The system has been applied, however, with emendations, in Chicago, and no doubt could be in New York.

The views from the hills are of no common order, as may be imagined. As you rise on the cable road you seem to hang in the air above the body of the city, and above the harbor and its environment. The Clay Street road, one of the very steepest, passes through the Chinese quarter. Half-way up you have an ensign, consisting of a blue and crimson dragon upon an orange field, on the ordinary dwelling-house used as the Chinese consulate-general, flying as a bright bit of color in the foreground. The bay, so far below the eye, has a fiat, opaque look. On some rare days it is very blue in color, but oftener it is slate or greenish gray, and the passing vessels criss-cross the white lines of their wakes upon it like pencil-marks on the slate. The prevailing atmosphere above it is rarely clear. Some wisp of fog is generally sneaking in at the Golden Gate, or lurking under the shore of dark Tamalpais, waiting its opportuni- ty to rush over and seize upon the city. An obscurity compounded in part of fog and partly of coal smoke hovers in areas, now enveloping only the town, now the prospect, so that nothing can be seen from it, though the town itself be free. And now it lifts momentarily from the horizon and shows glimpses of distant islands and cities, and of the peak of Mount Diablo thirty miles away, then shuts down upon them again as if they were but figments of the imagination. The birds-eye view of the lights of the city at night is particularly striking. The street gas lamps, set in constellations, or radiating in formal lines, recall the bivouac of a mighty army. It is as if the hosts of Armageddon were encamped round about awaiting the final conflict. For several days, from California Street Hill, I was favored with the spectacle of a devastating fire in the wood on Mount Tamalpais. Its dark smoke rendered the sunsets lurid and ominous I and at night the burning mountain, reflected red in the bay, was like a dreadful Vesuvius or Hecla.

Go to top of page.


Kansas City Cable Railway

From The Kansas City Review of Science and Industry / Volume VIII, Number 10, February 1885

The Kansas City Cable Railway was the first installation of the duplicate cable system.

There are now two cities in this country that have cable railways in successful operation, and very soon three others will be added to the list, New York, Philadelphia and Kansas City. The latter city can claim the first duplicate cable railway, the others having but one cable in the tunnel beneath the street for propelling cars. The distinction between a singe and double cable in cable railways is what their respective names imply. In the ordinary cable railway, or single cable road, when accidents occur to the cable, such as loosened strands, broken wire, or the cable is otherwise injured so as to affects its strength, to repair these injuries it becomes necessary to stop the operation of the road, thus causing a cessation of business, which means a very great loss to the company, or which may be prevented only by continuing to use the fractured cable until the hour of stopping at midnight, which would cause still greater injury and perhaps ruin to the cable for further use.

In Chicago when serious accidents occur, the horses used on other lines owned by the company are pressed into service and made to haul the cars. Horses would be of little use pulling cars along the road in Kansas City, as the grades are so excessively steep that it would be impossible to ascend many of them. Should an accident occur, the public would have to wait until the repairing had been done but for the additional cable and machinery that is at all times ready for use at a moment's notice. The change from one cable to the other requires but very little time, and the travel is not interrupted. The duplicate road has a duplication of machinery throughout. Besides the cables there are two carrying pulleys side by side that support the cable in every pulley-pit, which are thirty-five feet apart along the road; at the extreme ends of the railway, where in the ordinary cable road there is one sheave twelve feet in diameter, in the duplicate road there are two. This duplication is still more extensive in that two independent sets of driving machingery are provided in the engine-house, also engines, boilers, etc.; in fact the provision made in the way of machinery is sufficient to build another and independent road; thus the cost if very considerable greater than in the case of a single cable railway.

There is probably no cable railway in the country, that in constructing presented so many difficult features to be overcome as the Kansas City road. The wrought-iron elevated structure from Union Avenue to the top of the bluff does not represent all the work done at this end of the road. At Union Avenue large and massive brick foundations were built pyramidal in shape. Old sewers were encountered requiring special provision to overcome these unexpected obstacles. At the bluff very serious difficulties presented themselves. In locating the foundations for the wrought-iron supports for the viaduct it was discovered that a local movement in limestone ledge was taking place. A great portion of earth and loose rock deposited at the base of the bluff was removed, exposing the rock ledge in questiton five feet in thickness, underneath which was a stratum of soapstone and bituminous shale eighteen feet in depth, which disintegrated rapidly and thus allowed the rock ledge above to fall in large fragments to the base of the bluff. The rock ledge was cleared of earth and other materials, and all the cracks or fissures ocated, which were then thoroughly cleaned out and filled with liquid cement grout made from German Portland cement. When the cement had set it excluded all water from springs and surface drainage from the base of the rock, which before served as a lubricant to the moving ledge. The shale and soapstone were further protected by building a stone wall in front of the vertical face of the stratum, close to it; the space between the wall and shale was then filled with concrete and cement grout, thus excluding air and water from the exposed face of shale; the rock ledge was thus made solid and permanent, no further movement having been discovered. The process of disintegration of the shale was watched with considerable interest. It was noticed that so long as the shale contained some moisture, or the water was allowed to saturate the surface, disintegration was retarded, but when the sun caused the shale to become dried and warm, the absorbed air seemed to expand, thus throwing off small particles of shale, which would have continued until the whole ledge had fallen but for the protecting wall and the concrete excluding the air.

The wrought-iron viaduct will, when completed, present a very interesting piece of work. The incline down the bluff is eighteen and three-tenths feet in 100 feet and commences at the west line of Jefferson Street with an elevation of 191 feet and descends westwardly, at the rate mentioned, to the center of the main span across the Union Depot yards, the length of which span, from end-pin to end-pin is 186 feet. The incline commencing in the center of this span, ascending with the rate mentioned, caused a curious modification in the design of this bridge from ordinary bridges. The end posts were made to incline so as to cover two panel length of the bridge, thus providing sufficient clearance between the protal bracing and top of the car, which could not have been secured has only one panel lenth been covered by the end post as is usual.

From the centre of this span westward to waiting station, the tracks are level, beginning at this point to ascend at the rate of two feet in one hundred to and by the waiting station. The waiting station is quite an ornament of its kind. Stairways descend to either sidewalk of Union Avenue, and are covered and protected from the weather. The roof of the main waiting room projects over the platform on all sides, and is covered with slate. A passenger wishing to take a train up the incline to Main street pays his fare to the agent, who gives a ticket in return, which is collected on the train. He passes through the waiting-room to the train. Passengers coming from the trains pass to the passge-way on either side of the building, through the gates to the stairways. The trusses across Union Avenue are sixty-five feet in length and eight feet in depth, and three in number, that support the waiting-room and tracks, which trusses are in turn supported by wrought-iron columns, three on each side of the Avenue. These columns are inserted into heavy cast-iron shoes or bases, extending into the casting about two feet. The space between the cast socket and column was filled with cement grout and is now equal to rock in harness. There are two large sheaves, twelve feet in diameter, over the Avenue, supported between the girders, weighing four thousand pounds each. The main bridge span at Union Avenue is supported by two wrought-iron columns, one under the end shoe of each truss. The distance from the railway tracks below the bridge to the floor is twenty-three feet, and the distance from the floor of the bridge to the upper chord or top of truss, is twenty-six feet. The iron work at this end of the road is composed of eleven spans and they have the following lengths, commencing at Union Avenue: 65 feet, 185 feet, 67 feet, 29 feet, 45 feet, 46 feet, 47 feet, 46 feet, 46 feet, 47 feet, 47 feet. At the end of the last span the cable leaves the open work of the viaduct and enters the concrete subway below the street. The rails of the tracks on the viaduct at one point are about fifty feet above the surface of the ground below. The railway is double-track throught. There are two curves, both at street intersections, at right angles to each other. A special and indepenent swere has been constructed from one end of the road to the other, between the tracks, which connects with the regular city sewers at every street crossing. The carrying pulley-pits are made of brick twelve feet by five by five feet in depth, extending under both tracks in its longest dimensions. They are large and spacious. Two cast-iron pulley frames are arranged at each side of the pit corresponding with each track. Communication is had with the pit by means of a heavy trap door between the tracks.

The cable in passing around the curves at Grand Avenue occasions great resistance. The constructions at the curves consist of a series of horizontal conical pulleys, there being three independent pulleys on each shaft, which constitute a set. The lower one is a large conical pulley having a groove at its base in which the idle cable rests, the next above this is an ordinary horizontal grooved pulley in which the moving cable rides. The next and upper pulley of the set is a plain pulley with a smooth rim against which the grip rests and by which it is guided around the curve. The cable passes from the engine-house to the sub-way below the street and under the south track, thence to Woodland Avenue, around twelve-foot end-sheaves, thence into the sub-way below the north track to Union Avenue, around the twelve-foot sheaves over Union Avenue, and thence to engine-house, around the driving drums and thence to the tension-car wheel or sheave.

The grip-cars are radically changed from those in use on other roads, in that the grip is operated from the end of the car instead of in the centre, consequently the gripping attachments occupy very little room in the car. A complete cab is provided at each end of the car in which the grip-man is stationed and operates his grip without being interfered with by passengers.

The grip consists of three parts-the upper or crank part, the middle shank, and the lower or jaws. The upper is made from cast-steel, and so constructed as to embody great strength; the crank and shaft giving motion to the jaw of the grip are connected at one side, this part with the levers of the grip-wheel in the cab, which crank is also connected with the central and moving part of the shank, which has a vertical motion; the moving pan of the shank is also connected with the movable and horizontal upper jaw of the grip, the shank being made from rolled-steel and the jaw of cast-steel lined with brass, reducing the wear on the cable to a minimum. The lower jaw of the grip is stationery, having two rollers placed vertically at each end of the jaw. When it is desired to start a car the grip-wheel in the cab is turned to the right, which forces the movable upper jaw (seventeen inches long) down on the cable resting on or rolling over the pulleys in the lower jaw of the grip; the pressure forces the rollers down a limited distance with the cable; as they are supported by flexible journals, the brass in the grip takes hold of the cable under the pressure of the grip wheel and the car moves. If it is desired to stop the car, the grip-wheel is turned to the left, thus raising the movable upper jaw from the cable. The pressure being released, the small pulleys in the lower jaw spring upward slightly and support the cable, revolving at the same time, and while the car is thus stayed, receiving or discharging passengers, the cable continues to move through the grip between the jaws supported by the pulleys referred to. It does not matter how often stops are made, the cable never leaves its position between the grip's jaws - it is either gripped by the jaws or riding on the pulleys n the lower jaws. The cable is, however, conducted out of the grip when it is necessary to change the car from one track to another, and in passing over the vault on the south track at the engine-house - there being no cable at this point, as it is conducted into the engine-house too far below the street for the grip to reach - the cars are carried over this distance, which amounts to forty feet, by momentum acquired from the cable before reaching the vault. This occurs on the south track only.

The cable is one and one quarter inches in diameter, made from Swedish iton wire. It is capable of resisting a strain of thirty tons. There is a total length in both cables of forty-four thousand feet. It is expected that this cable will have to be replaced within eighteen months from the opening of the road.

Many people have been at a loss to know how the cable is prevented from impinging on the upper side of the tube or tunnel below the street in the depressions along the line, and at points where the grade changes from a level to a comparatively steep grade. It must be remembered that the cable is very much heavier than a string, its weight being two and a half pounds per lineal foot. When the ordinary tension is on the cable and an average number of grips with their loaded cars attached are being propelled by it, the deflection between the carrying-pulleys, which are thirty-five feet apart, is about two incles. It would be impossible with any power to cause the cable to assume a straight line from one hill to the other, and before the sag or deflection could be gotten out, it would break in two. The cable leaves the engine-house with a strain of about one ton and returns to it with about five tons (approximately), doing its maximum work, and the total weight of one cable is about twenty-eight tons. Where it is necessary at the depressions referred to, depression-pulleys are placed which hold the cable down, and when the grip passes the cable is pressed down six inches below these pulleys; this the grip avoids contact with them.

The maximum grades on various roads are as follows:
Clay Street, San Francisco16 feet in 100 feet.
California St., "18 feet in 100 feet.
Sutter St., "8.7 feet in 100 feet.
Geary St., "9.8 feet in 100 feet.
Ninth St., Kansas City18.3 feet in 100 feet.
Chicago City, State St.(about level)

The power developed in operating cable railways is usually proportioned as follows:
For moving cable51 per cent.
For moving cars46 per cent.
For moving passengers3 per cent.

The power-station or engine-house is located at the corner of 9th and Washington Streets, and has a frontage on the latter street of ninety feet and on the former of 144 feet, two stories and basement. The east room is the boiler-room and is separated from the engine-room by a brick partition wall; the floor is thirty-two feet below the street grade. One battery of boilers, after the Ferminicle patent, twenty feet in height, occupying a floor space of twelve feet by twenty feet, have their fire fronts facing 9th Street. The boiler setting are especially attactive, being laid up with Philadelphia pressed brick, with a bold projecting cornice. In the use of these boilers there is no danger from disastrous explosions, as is the case in the use of ordinary tubular boilers. At the base on either side and a little below the grate-level are two large plate-iron mud-drums, the upper sides of which are framed with a horizontal plate into which the water-tubes are expanded; the tubes are sixteen feet long and three and a half inches in diameter, and are placed in an inclined position, the ends being expanded into the lower horizontal plates of the upper water drums. There are two of these drums in each boiler corresponding with the lower mud-drums, the tubes in these drums incline towards each other as they extend upward into the water-drums above; above these drums the steam-drum is located, connected with the upper drums referred to by means of two wrought-iron legs six inches in diameter. The water circulates through the tubes, the heated gases passing around and about them. In the case of low water there is no danger of explosion save from about three and a half inch water-tubes, which would result in no serious damage should any explode.

Immediately back of these boilers in located the smoke-stack, and south of this again is another batter of boilers. The smoke-stack pedestal is eighteen feet square, and the total height of the stack 150 feet above the boiler-room floor, the flue is five feet in diameter, having an iron ladder fixed at one side of the flue from the base to the top of the stack. Directly west of the stack and against the wall, is arranged a large heater with pumps and other necessary parts. The heater containing water has a height of twenty feet and is fifty inches in diameter, having inverted (x) U-shaped brass tubes. On either side of the heater are Worthington Duplex Pumps, each having a capacity of 8,000 gallons per hour. The exhaust steam-pipe from the engines conducts the steam to the heater, which then passes through the inverted U-shaped brass tubes in the water in the heater, thence by the exhaust-pipe out of the building.

It will be seen that in this, as in all heaters, the steam after having performed all the work required of it in the engines in turning the machinery, is conducted through the heater thus heating the feed-water to a temperature of about 280 degrees when it is forced by the pumps into the boilers. It is generally claimed that fifteen per cent of fuel is saved by using a good heater over the practice of forcing cold water into the boilers. The total boiler capacity equals six hundred horse power.

The engine-room, which is twenty feet above the floor of the boiler-room, has the appearance of some large pumping-station. There seems at first glance to be a confusion of large drums and gear wheels which, upon closer examination, assume right positions and perform each their respective work. To those expert in mechanical construction it presents a very complete and well arranged picture of accurate designing, nicely proportioned parts, and upon the whole a model plant for the purposes for which it was designed. There are two large automatic cut-off engines quite near the door through which you in entering from the boiler-room. The cylinders are 24x48 inches. The engines throughout are highly finished and were built by William Wright, of Newburgh, New York. In place of the ordinary crank, large and highly polished circular discs are arranged, which add much to the engines. The engines combined are equal to five hundred horse power.

The engines are about twenty feet apart, having a common shaft thirteen and a half inches in diameter. On the end of the shaft nearest the east engine the large driving-wheel is fixed; it is eighteen feet in diameter, weighing 34,500 pounds. A very heavy and substantial pillar-block supports the shaft between the fly-wheel and the large gear on engine-shaft. This gear has an eighteen inch face, and is geared into a large gear ten feet in diameter, keyed on the main-line shaft of driving machinery. A very heavy cast-iron girder-frame surrounds the gear referred to. The main-line shaft extends westward across to the girder-frame of driving machinery. This frame entirely surrounds the driving machinery and is eighteen inches in depth and seventeen inches across the upper face. Between the two outside parts of the girder-frame there is arranged a central piece running north and parallel with the outside frame. On each of these three parts fo the girder-bed or frame of the machinery, and supporting the main-line shaft, are heavily proportioned pillar blocks. Next the two outside pillar blocks the five-foot gears of the machinery are keyed on a sleeve to the main shaft which revolves in the sleeve, each of which have a sleeve arranged on their inward side. In these sleeves eight steel circular plates are permanently fixed. Another sleeve is keyed on to the main shaft, which also has eight circular steel plates arranged which revolve with the shaft, but which are worked laterally on a key in the shaft. When the sleeve is moved inward with its steel plates, the plates take up against the steel plates in the sleeve on the gear, causing frictional contact, which is gradual but positive, and when the plates are brought together with sufficient pressure the gear revolves with the main driving-shaft. These gears are connected with a series of gears, which cause the two driving drums twelve feet in diameter of each set of driving machinery, around which the cable passes, to revolve. The central piece of girder frame separate the two sets of machinery, either of which is set in motion or deprived of motion by means of the lever connected with their respective clutches described above. These clutches are know as the Weston Clutch and are the largest of the kind to this class of machinery.

When accidents occur to the cable and it is desired to repair it, the clutch belonging to that particular set of machinery is released, and the other is forced against the gear plates of the other set of machinery; thus the other cable is set in motion, doing the work of the injured one until it is repaired. The injured cable is then, by means of auxillary engines, slowly led into the engine-room where the repairing is done.

These auxillary engines, especially designed for this purpose, were built by the New York Steam Engine Company. The driving machinery was made by Poole & Hunt, Baltimore, who have a national reputation for manufacturing the finest gears and machinery of this character.

Back of each set of driving machinery there is a track built which extends five feet above the floor of the engine-room, and supported by a series of brick arches. Upon this track a car moves back and forth, moved back by means of heavy weights in a pit at the back part of the building connected with the car by means of a cable over a veritcal pulley the pit, moving forward as the increased tension on the cable in the street demands, caused by additional cars using the cable. There is arranged also in the center of this tension-car a large twelve-foot sheave which constantly revolves as the cable passes around it, in going from the driving-drum to the sheave and out into the street again. The gauge of the tension track is three feet. In front of the engine-house on 9th Street a very large vault is made under the street; the roadway at this point is carried by iron column. This vault has six large twelve-foot sheaves arranged it it, each of which weighs 4,000 pounds; these are used for directing or guiding the cables in to the engine-house.

The room next west of the engine room is arranged as a machine shop; it is large and provided with such tools as work of this kind requires.

The 9th and Washington Street floor is used as a storage room for cars, in one corner of which is provided a very complete wash-room for cars, heated in winter with steam radiators, and also provided with hot water.

The upper floor is used as a paint and repair shop, except that portion partitioned off for offices. These offices are all finished with Southern pine, there being in all six rooms; namely, conductors', superintendent's, cashier's, directors', and civil engineer's office.

The total length of this road, as now built, is two and one-quarter miles. Next summer the road will be extended eastward one mile on Independence Avenue and one mile on 9th Street. Mr. Robert Gillham, C.E., chief engineer of the company, has his plans of these extensions nearly completed. Plans are also being prepared by Mr. Gillham, who is also chief engineer for the top of page.


Studies of the Great West

From Harper's New Monthly Magazine / Volume 76, Issue 456, May 1888

Chicago.

But it is the business portion of the south side that is the miracle of the time, the solid creation of energy and capital since the fire -- the square mile containing the Post-office and City Hall, the giant hotels, the opera-houses and theatres, the Board of Trade building, the many-storied offices, the great shops, the club-houses, the vast retail and wholesale warehouses. This area has the advantage of some other great business centres in having broad streets at right angles, but with all this openness for movement, the throng of passengers and traffic, the intersecting street and cable railways, the loads of freight and the crush of carriages, the life and hurry and excitement are sufficient to satisfy the most eager lover of metropolitan pandemonium.

Go to top of page.


The Living Age

The Living Age, Volume 178, Issue 2302, August 11, 1888

The approaches to San Francisco by water are not especially impressive. After the immense and majestic stretches of the Pacific with its enormous swell, which tells of the thousands upon thousands of miles of unbroken water solitudes, the Golden Gate seems a trifle petty. This feeling is heightened if one arrives in the harbor when a quiet cool mist, sweeping in landward, wraps the sandhills in a kind of ragged curtain, through which sections of bluffs crowned with crazy-looking houses appear. But the interior of the town is not at all disappointing. San Francisco looks quite as old and substantial, in all its business quarters, as Liverpool or Hamburg; there is nothing rickety or ungraceful in the appointments of hotel or shop; but one thing lacking to characterize a great and wealthy city is the large number of handsome private equipages seen in European towns. The cable-cars, crawling to and fro, without any visible motive force, seem weird and magical, especially as they climb terrace after terrace of the sandhills and turn around corners as if they were endowed with life.

Go to top of page.


Cincinnati, Historical and Descriptive

The New England magazine. Volume 6, Issue 35, September 1888

Access to the hill-tops is had by steeply graded roads, and by series of inclined planes, up which cars are drawn by powerful engines. The city is well supplied with street-railways, with all sorts of horse-cars and cable-cars; and some electric lines of railroad are projected. All the principal lines converge at Fountain Square.

Go to top of page.


Development of Electric Railways

The New England magazine. Volume 6, Issue 36, October 1888

What are the advantages claimed for electricity over other powers for locomotion? As against animal power, it does away with expenditures for real estate and buildings for stables, and storage for hay and feed, and with expenses for insurance and taxes, and for veterinary surgeons, and a standing army of hostlers and stable-boys. Less space is required for cars on the track, and there is no wear on the pavement between rails. Indeed, experience demonstrates the fact that running expenses are a third less. To the public generally, the recommendations are these: more rapid transit, less noise, less obstruction on crowded streets, and less liability of injury to pedestrians or passengers, as an electric car can be stopped more quickly than a horse-car, indeed, it can be reversed instantly, almost. Add to these items the absence of disease-breeding stables, and the value of the horse-car is completely snowed under.

Many of these advantages, of course, can be claimed for cable-roads; but, to offset them, is the fact that the cost of construction of the cable road is forty per cent. greater than that of the most expensive electric road, while the running expenses of the former are seventy per cent. greater. In the case of cable-cars, speed is limited to the speed of the cable, and when the speed is lessened, the slipping of the grip wears the cable rapidly. Furthermore, the direction of a cable-car cannot be reversed.

Go to top of page.


St Paul

The New England magazine. Volume 8, Issue 5, July 1890

To fasten these and the further districts of the city itself to the business centre, cable lines and horse-car lines radiated in every direction. Within the present year electricity has been substituted on several lines, and the days of the old horse car will end with the year.

Go to top of page.


Chicago - The Main Exhibit

From Harper's New Monthly Magazine / Volume 84, Issue 501, February 1892

Our horse-cars in New York move at the rate of about six miles an hour. The cable-cars of Chicago make more than nine miles an hour in town, and more than thirteen miles an hour where the population is less dense. They go in trains of two cars each, and with such a racket of gong-ringing and such a grinding and whir of grip-wheels as to make a modern vestibuled train seem a waste of the opportunities for noise. But these street cars distribute the people grandly, and while they occasionally run over a stray citizen, they far more frequently clear their way by lifting wagons and trucks bodily to one side as they whirl along.

Go to top of page.


The Capitals Of The Northwest

From Harper's New Monthly Magazine / Volume 84, Issue 502, March 1892

In eight years St. Paul has made tremendous strides away from the habits and methods of civic childhood. Its officials say that more has been done to establish its character as a finished city than will ever need to be done in the future. Its expenditures of energy and money have been remarkable. It has levelled its hills, filled its marshes, and modernized all its conveniences. The water-works, which were the property of individuals, now belong to the people, and serve two hundred miles of mains with pure wholesome water brought from a group of lakes ten miles north of the city. A noted firm of water-works builders has declared that it would willingly assume the city debt in return for the profits of this branch of the public service. No city in the country is better drained than it is by its new sewer system. It had a mile and a half of improved streets and three stone sidewalks eight years ago, and to-day it possesses forty-five miles of finished streets and fifty miles of stone sidewalks. Two costly bridges have been put across the Mississippi, and an important bridge has been rebuilt. In no city in the West is the railroad grade-crossing bugaboo more nearly exorcised. Only one notable crossing of that sort endangers the peoples lives and limbs. The public buildings were built at moderate cost, and without sixpence worth of scandal. The restricted saloon system is enforced there, and the residence districts are kept sacred to home influences and surroundings. The streets are thoroughly policed, and the fire department is practically new, and appointed with the most modern appliances. The street-car service consists of nearly one hundred miles of electric railway, and fifteen miles of cable road. There are no horse-cars in use in the city; they would be too slow for such a town. St. Paul is rich in costly and great office buildings. There are a dozen such, any and all of which would ornament any city in the country.

Go to top of page.


Washington - The Evergreen State. (With Map)

From Harper's New Monthly Magazine / Volume 85, Issue 508, September 1892

Spokane is very enterprising. It has an opera-house that is the finest theatre west of the Mississippi River, and its Board of Trade, under the tireless energy of Mr. John R. Reavis, is incessantly at work to strengthen and enlarge the industries of the city. The place has 25,000 population. It lost 3000 last year as a result of the general monetary depression, but its gains continue, and the agricultural country tributary to it has grown steadily and suffered no set-backs. It trades with 200 towns, and talks with 60 over its telephone wires. Its water - power -- having a minimum power of 32,000 horses -- runs its electric cars, electric lights, cable-cars, printing - presses, elevators, and all its small machinery.

...

I have not mentioned the electric lights, electric cars, water systems, and such modern conveniences in speaking of either of these chief cities. It would be an omission due to familiarity with the entire new West if I failed to say explicitly that almost wherever one may travel in that country the same conveniences are at hand that one is accustomed to finding in New York. If there is a difference, it is that the West is the more progressive, and the more quickly takes up whatever is good as well as new. Seattle has cable as well as electric cars, but all the cities have the latter sort of vehicles. The New Growth Of St. Louis. [Harper's new monthly magazine. / Volume 85, Issue 510, November, 1892] But to return to the size and growth of the city. It reaches along the river-front 19 miles. It extends six and sixty-two one - hundredth miles inland, and it contains 40,000 acres, or 61.37 square miles. This immense territory is well served by a great and thoroughly modern system of surface street railways, having more than 214 miles of tracks, and run almost entirely by electric and cable power. Some of the newer cars in use on the electric roads are as large again as our New York street cars, and almost half as large as steam railway coaches. Their rapid movements, their flashing head-lights at night, and the cling-clang of the cracked - sounding gongs in the streets seem to epitomize the rush and force of Western development. There is an element of sorcery in both of them in modern progress and in the electric cars. Was it not Dr. Holmes who likened those cars to witches flying along with their broomsticks sweeping the air?

Go to top of page.


The City of Denver

The New England magazine. Volume 13, Issue 5, October 1892

Governor Evans also has the distinction of having been the president and leading spirit of the company which built the Denver and South Park Railroad from Denver to Leadville (now a branch of the Union Pacific system) and of the company which built the Denver & New Orleans Railroad (now the Fort Worth branch of the Union Pacific) which gave Denver direct access to Galveston and New Orleans, bringing tide water in the Gulf of Mexico practically 1,000 miles nearer than the Atlantic seaboard. He was also the president and leading spirit of the company which built the first street cable railroad in Denver; and as an individual he built the first three-story brick building in Denver, hauling the iron work in wagons across the plains, six hundred miles, from the Missouri River, before the advent of railroads.

...

Among the many matters which excite surprise and elicit praise from eastern visitors to Denver is the admirable street railway system. Its extent can be realized from the fact that out of the ninety-seven Commanderies of visiting Knights Templar located by the local committee at the recent conclave, all but six were within two blocks of a street car line. There are now in operation one hundred and thirty-two miles of street railway in the city and suburbs (forty - five miles of cable, and seventy - seven of electric), and franchises granted for over forty additional miles. The present lines carry on an average more than eighty thousand people each day, a showing which cannot be surpassed by any other city of the size of Denver.

Go to top of page.


The World's Fair At Chicago. II.
Chicago's Part In The World's Fair by Franklin Macveagh

From Scribners / Volume 12, Issue 5, November 1892

The transportation of the people from other parts of the city to the Fair presented difficulties which have been completely solved. All excursion trains that is, all trains with passengers for the Fair exclusively, no matter from what distance, nor over what lines they come -- will deliver their passengers over the Belt lines, in the Fair grounds, without entering the heart of the city at all, and will take up their passengers at the same place. The transportation facilities within the city will be these:

1. Surface street-car lines, including one first class cable line, which has in anticipation just now doubled its capacity by doubling its loop facilities. This line has handled an immense Sunday traffic easily without these extra facilities.
2. A double-track elevated railroad just completing, and therefore a new resource.
3. A boat system from the old city front. This transportation will be in the hands of one very responsible company. The vessels will be large, safe, and well appointed; and the company is obliged to furnish a service equal to at least fifteen thousand passengers per hour.
4. The Illinois Central Railroad Company's right of way runs from the centre of the city almost to the Fair grounds, and consists of six tracks, two of which are for suburban passenger traffic. The right of way is being raised, and four tracks being added for exclusive World's Fair passenger traffictwo for express trains from and to the centre of the city without stops, and two for trains that stop at all city stations. These four tracks will run into the World's Fair grounds, where the terminal facilities will be ample and perfect. The facilities of this line, of course, could be largely increased by the partial use of its other tracks, but that will not in the least be necessary. The line will be protected by the latest and best automatic block system ; and it is expected to carry the bulk of the people.
5. The World's Fair is reached from the heart of the city by parkways, and many people will choose to drive. A cheap cab system prevails, and the streets are well supplied with hansoms and other cabs. The cabs will of course greatly increase.
6. Very many people, living or stopping near the Fair grounds, will need no conveyance.

Go to top of page.


Tacoma

The New England magazine. Volume 13, Issue 6, February 1893

The street car system of Tacoma is still in its infancy, yet there are nearly fifty miles of street railway in operation. Electric cars are run on the entire system, with the exception of two miles of cable railway running up a grade too steep for the electric cars.

Go to top of page.


Colorado and Its Capital

From Harper's New Monthly Magazine / Volume 86, Issue 516, May 1893

And now we will fancy it is Sunday in Denver. The worshippers are coming out of the churches. But in the streets rush the cable cars with their week-day clanging of bells. On the car roofs are the signs, To Elitchs Gardens, where, according to the papers next day, there are music and dancing and bangle-bedizened women. Other cars rush toward the City Park, where the State Capital Band is to play.

Go to top of page.


Chicago's Gentle Side by Julian Ralph

From Harper's New Monthly Magazine / Volume 87, Issue 518, July 1893

When I wrote my first paper upon Chicago, I supposed myself well equipped for the task. I saw Chicago day after day, lived in its hotels and clubs, met its leading business men and officials, and got a great deal which was novel and striking from what I saw around me, and from what I heard of the commercial and other secrets of its marvellous growth and sudden importance. It is customary to ridicule the travellers who found books upon short visits to foreign places, but the ridicule is not always deserved. If the writers are travelled and observant spectators, if they ask the right questions of the right men, and if they set down nothing of which they are not certain, the probability is that what they write will be more valuable in its way than a similar work from the pen of one who is dulled to the place by familiarity. And yet I know now that my notes upon Chicago only went half-way. They took no heed of a moiety of the population, the women, with all that they stand for.

I saw the rushing trains of cable-cars in the streets and heard the clang-clang of their gongs. It seemed to me then (and so it still seems, aftev many another stay in the city) that the men in the streets leap to the strokes of those bells; there is no escaping their sharp din; it sounds incessantly in the men's ears. It seems to jog them, to keep them rushing along, like a sort of Western conscience, or as if it were a goad, or the perpetual prod of a bayonet. It is as if it might be the voice of the Genius of the West crying, Clang-clang (hustle) ! clang-clang (be lively) ! And it needs no wizard sight to note the effect upon the men as they are kept up to their daily scramble, and forge along the thoroughfaresmore often talking to themselves when you pass them than you have ever noticed that men in other cities are given to do. I saw all that; but how stupid it was not to notice that the women escaped the relentless influence!

They appear not to hear the bells. The lines of the masculine straining are not furrowed in their faces. They remain composed and unmoved. They might be the very same women we see in Havana or Brooklyn, so perfectly undisturbed and at ease are theyeven when they pass the Board of Trade, which I take to be the dynamo that surcharges the air for the men.

I went into the towering office buildings, nerving myself for the moments battle at the doors against the outpouring torrent and the missilelike office-boys, who shoot out as from the mouths of cannon. I saw the flying elevators, and at every landing heard the bankers and architects and lawyers shout Down! or Up, up ! and saw them spring almost out of their alothes, as if each elevator was the only one ever built, and would make only one trip before it vanished like a bubble. The office-girls were as badly stricken with this St. Vitus hustle as the men, which must account for my not noticing that the main body of women,when they came to these buildings to visit husbands or brothers,were creatures apart from the confusion -- reposeful, stylish,carefully toileted, serene, and unruffled.

I often squeezed into the luncheon crowd at the Union League Club, and got the latest wheat quotation with my roast, and the valuation of North Side lots with my dessert; but I did not then know that there was a ladies side entrance to the club-house, leading to parlors and dining-rooms as quiet as any in Philadelphia, where impassive maids in starched caps sat like bits of majorca-ware, and the clang-clang of the car bells sounded faintly, like the antipodean echoes in a Japanese sea-shell. I smoked at the Chicago Club with Mayor Washburne, and the softening influence of women in public affairs happened not to come into our talk; with Mr. Burnham, the leading architect, and heard nothing of the buildings put up for and by women. Far less was there any hint, in the crush at that club, of the Argonauts -- those leisurely Chicago Club men who haunt a separate house where they loaf in flannels, and the women add the luxurious, tremulous shiver of silk to the sounds of light laughter and elegant dining.

And every evening, while that first study of the city went on, the diurnal. stampede from the tall buildings and the choking of the inadequate streets around them took place. The cable-cars became loaded and incrusted with double burdens, in which men clung to one another like caterpillars. Thus the crowded business district was emptied and the homes were filled. Any one could see that, and I wrote that there were more home-going and home-staying there than in any large Eastern city in this country. But who could guess what that meant? Who could know the extent of the rulership of the women at night and in the homes, or how far it went beyond those limitations? Who would dream that in Chicago, of all placesall talk of business is tabooed in the homes, and that the men sink upon thick upholstering, in the soft shaded light of silk-crowned lamps, amid lace-work and bric-a-brac, and in the blessed atmosphere of music and gentle voices -- all so soothing and so highly esteemed that it is there the custom for the men to gather accredited strangers and guests around them at home for the enjoyment of dinner, cigars, and cards, rather than at the clubs and in the hotel lobbies? I could not know it, and so, for one reason and another, the gentle side of Chicago was left out of that article.

Go to top of page.


Home/ What/ How/ Where & When/ Who/ Why
Chronology/ Miscellany/ Links/ Map/ Bibliography

Copyright 2001-2015 by Joe Thompson. All rights reserved. My 19th Century Magazine Articles Page

Last updated 01-January-2015